Радиовещательный укв радиоприемник на одной микросхеме. Цифровой УКВ приемник. Принцип работы стереоприемника

Cовременный высокочувствительный карманный УКВ радиоприемник с наушниками и с простым, удобным управлением, который Вы можете собрать самостоятельно или из набора МАСТЕР КИТ NS065, рассчитан на работу в диапазоне 64-108 МГц. В отечественном поддиапазоне он принимает станции в монофоническом режиме, а в FM диапазоне - в стереофоническом.

Напряжение питания радиоприемника: 9-12 В. Ток потребления при средней громкости составляет не более 50 мА, чувствительность - не менее 5 мкВ/м, к выходу приемника можно подключить наушники или динамик с сопротивлением 8 Ом или больше. Усилитель имеет достаточно высокую выходную мощность 0,5 Вт.

Радиоприемник будет полезен в походе, на прогулке и на даче.

Принципиальная электрическая схема радиоприемника приведена на рис. 1 .

Рисунок 1. Схема электрическая принципиальная

Радиоприемник состоит из двух конструктивно объединенных узлов - УКВ ЧМ тюнера и усилителя низкой частоты.

УКВ ЧМ тюнер выполнен на микросхеме TDA7000 (DA1) производства фирмы PHILIPS, которая представляет собой полностью интегрированный УКВ приемник от антенного входа до выхода низкой частоты, выполненный в одном корпусе. В тракт УКВ приемника входят: входной колебательный контур, настроенный на частоту принимаемой станции, перестраиваемый гетеродин, с помощью которого происходит настройка на волну станции, смеситель, обеспечивающий фильтрацию полезного сигнала из помех, частотный детектор, отделяющий сигнал от частотно-модулирующей несущей и предварительный усилитель низкой частоты. Микросхема DA1 требует минимального количества внешних элементов. Контур, состоящий из катушки индуктивности L1, варикапа VD2 и емкостей С3, С4, обеспечивает настройку на необходимую радиостанцию. Перестройка осуществляется при помощи многооборотного потенциометра R2 изменяющего напряжение на варикапе VD2 (изменяя его эквивалентную емкость). Входной LC-контур (L2, C16, C17 и С18) снижает влияние радиочастотных помех на прием.

УНЧ выполнен на микросхеме LM386N-1 (DA2), представляющей собой одноканальный усилитель мощности низкой частоты и предназначенной для использования в малогабаритной радиоаппаратуре с батарейным питанием.

Светодиод HL1 индицирует наличие напряжения питания. Потенциометром R7 регулируется уровень громкости.

Напряжение питания подается на контакты X2 (+) и Х5 (-).

Громкоговоритель подключается к контактам Х3(+) и Х4(-).

Конструктивно радиоприемник выполнен на печатной плате из фольгированного стеклотекстолита, на которой также размещены органы настройки, индикации и управления.

Монтажная плата приемника приведена на рис. 2. В качестве монтажной платы можно использовать, так называемую плату-слепыш, которая продается в магазинах радиодеталей или фирменную печатную плату из набора МАСТЕР КИТ.

Рисунок 2. Монтажная схема приемника

Все радиоэлементы, входящие в комплект, устанавливаются на печатной плате методом пайки. Для удобства монтажа на плате показано расположение элементов.

Все необходимые для сборки элементы показаны в таблице:

Таблица. Перечень элементов

Позиция Наименование
C1 10 мкФ/16 B
C2, C6 0,01 мкФ
C3, C10 220 пФ
C5, С15 3300 пФ
C7 0,15 мкФ
C8 0,022 мкФ
C9 180 пФ
C11 150 пФ
C12, С13 330 пФ
C14, С23 0,1 мкФ
C16, С19 1800 пФ
C17 56 пФ
C18 39 пФ
C20 0,22 мкФ
C21, С24 220 мкФ/16 В
C25 0,047 мкФ
DA1 TDA7000
DA2 LM386N-1
HL1 Светодиод АЛ 307 красный
R1, R3, R4 4,7 кОм
R2 100 кОм, многооборотный СП3-36
R5 22 кОм
R6 390 Ом
R7 51 кОм
R8 1 кОм
R9 10 Ом
VD1 Стабилитрон на напряжение стабилизации 5 В
VD2 KB121A или КВ121Б


Для правильного монтажа время пайки каждого контакта не должно превышать 2-3 секунды. Для работы Вам потребуется малогабаритный паяльник мощностью не более 25 Вт с хорошо заточенным жалом. Для пайки используйте свинцово-оловянный припой марки ПОС61М или аналогичный, а также жидкий неактивный флюс для радиомонтажных работ (например, 30% раствор канифоли в этиловом спирте или стандартный флюс ЛТИ-120).

На рис. 3 - 5 показаны цоколевки используемых полупроводниковых компонентов.

Рисунок 3. Цоколевка диода

Рисунок 4. Цоколевка светодиода

Рисунок 5. Цоколевка варикапа

Бескаркасные катушки L1, L2 изготавливаются самостоятельно из медного изолированного провода. L1 - 5 витков на оправке 3 мм проводом ПЭВ 0.6, а L2 - 6 витков на оправке 5 мм тем же проводом. В качестве оправки для намотки катушек можно использовать хвостовик сверла подходящего диаметра.

Радиоприемник собран на унифицированной плате МАСТЕР КИТ, пожалуйста, обратите внимание на отсутствие в схеме конденсаторов С4 и С22 - это не ошибка.

Установите регулятор громкости в среднее положение, подключите громкоговоритель и подайте напряжение питания.

Перемещаясь по диапазону частот потенциометром R2, определите, в какой его части Вы приблизительно находитесь, по расположению известных радиостанций.

Катушкой L2 настраивается уверенный прием крайних радиостанций по диапазону.

Внешний вид собранного УКВ радиоприемника показан на рис. 6.


Рисунок 6. Внешний вид УКВ радиоприемника

Полный список наборов доступен на сайте Мастер Кит

Это схема работает всего от одной 1,5 В батареи. В качестве аудио устройства воспроизведения применены обычные наушник с общим сопротивлением 64 Ом. Питания от батарейки проходит через разъем наушников, поэтому достаточно вытащить наушники из разъема, чтоб отключить приемник. Чувствительности приемника достаточно, что на 2-х метровую проводную антенну применять несколько качественных станций КВ и ДВ диапазона.


Катушка L1 изготавливается на сердечнике из феррита длиной 100 мм. Обмотка состоит из 220 витков провода ПЭЛШО 0,15-0,2. Намотка осуществляется в навалочку на бумажной гильзе длиной 40 мм. Отвод нужно сделать от 50 витка от заземленного конца.

Схема приемника всего на одном полевом транзисторе

Этот вариант схемы простого однотранзисторного FM-приемника, работает по принципу сверхрегенератора.


Катушка на входе состоит из семи витков медного провода сечением 0,2 мм, намотанных на оправке 5 мм с отводом от 2-го, а вторая индуктивность содержит 30 витков провода 0,2 мм. Антенна типовая телескопическая, питание от одной батарейки типа Крона, ток потребления при этом всего 5 мА, поэтому хватит на долго. Настройка на радиостанцию осуществляется конденсатором переменной емкости. На выходе схемы звук слабенький, поэтому для усиления сигнала подойдет практически любой самодельный УНЧ.


Главное достоинство этой схемы в сравнении с другими типами приемников это отсутствие каких-либо генераторов и поэтому нет высокочастотного излучения в приемной антенне.

Сигнал радиоволны принимается антенной приемника и выделяется резонансной цепью на индуктивности L1 и емкости С2 а затем поступает на детекторный диод и усиливается.

Схема приемника ФМ диапазона на транзисторе и LM386.

Представлагаю вашему вниманию подборку простых схем FM приемников на диапазон 87.5 до 108 МГц. Данные схемы имеет достаточно простые для повторентия, даже начинающим радиолюбителям, обладают не большими габаритами и с легкостью поместиться у вас в кармане.



Схемы несмотря на, свою простоту обладают высокой селективностью и хорошим соотношение сигнал-шум и его вполне хватает для комфортного прослушивания радиостанций

Основой всех этих радиолюбительских схем радиоприемников, являются специализированные микросхемы такие как: TDA7000, TDA7001, 174XA42 и другие.


Приемник предназначен для приема телеграфных и телефонных сигналов радиолюбительских станций, работающих в 40-метровом диапазоне. Тракт построен по супергетеродинной схеме с одним преобразованием частоты. Схема приемника построена так, что используется широко доступная элементная база, в основном это транзисторы типа КТ3102 и диоды 1N4148.

Входной сигнал из антенной системы поступает на входной полосовой фильтр на двух контурах Т2-С13-С14 и ТЗ-С17-С15. Связующим менаду контурами является конденсатор С16. Этот фильтр выделяет сигнал в пределах 7 ... 7,1 МГц. При желании работать в другом диапазоне можно соответствующим образом перестроить контур путем замены катушек-трансформаторов и конденсаторов.

Со вторичной обмотки ВЧ-трансформатора ТЗ, первичная обмотка которого является вторым звеном фильтра, сигнал поступает на усилительный каскад на транзисторе VT4. Преобразователь частоты выполнен на диодах VD4-VD7 по кольцевой схеме. Входной сигнал поступает на первичную обмотку трансформатора Т4, а сигнал генератора плавного диапазона на первичную обмотку трансформатора Т6. Генератор плавного диапазона (ГПД) выполнен на транзисторах VT1-VT3. Собственно генератор собран на транзисторе VT1. Частота генерации лежит в пределах 2,085-2,185 МГц, этот диапазон задается контурной системой, состоящей из индуктивности L1, и разветвленной емкостной составляющей из С8, С7, С6, С5, СЗ, VD3.

Перестройка в указанных выше пределах осуществляется переменным резистором R2, который является органом настройки. Он регулирует постоянное напряжение на варикапе VD3, входящем в состав контура. Напряжение настройки стабилизируется с помощью стабилитрона VD1 и диода VD2. В процессе налаживания перекрытие в указанном выше диапазоне частот устанавливают подстройкой конденсаторов СЗ и Сб. При желании работать в другом диапазоне или с другой промежуточной частотой требуется соответственная перестройка контура ГПД. Сделать это не сложно вооружившись цифровым частотомером.

Контур включен между базой и эмиттером (общим минусом) транзистора VT1. Необходимая для возбуждения генератора ПОС берется с емкостного трансформатора между базой и эмиттером транзистора, состоящего из конденсаторов С9 и СЮ. ВЧ выделяется на эмиттере VT1 и поступает на усилительно-буферный каскад на транзисторах VT2 и VT3.

Нагрузка - на ВЧ-трансформатор Т1. С его вторичной обмотки сигнал ГПД поступает на преобразователь частоты. Тракт промежуточной частоты выполнен на транзисторах VT5-VT7. Выходное сопротивление преобразователя низко, поэтому первый каскад УПЧ сделан на транзисторе VT5 по схеме с общей базой. С его коллектора усиленное напряжение ПЧ поступает на кварцевый фильтр, трехзвенный, на частоту 4,915 МГц. При отсутствии резонаторов на данную частоту можно использовать другие, например, на 4,43 МГЦ (от видеотехники), но это потребует изменения настроек ГПД и самого кварцевого фильтра. Кварцевый фильтр здесь необычный, он отличается тем, что его полосу пропускания можно регулировать.

Схема приемника. Регулировка осуществляется посредством изменения емкостей, включенных меэду звеньями фильтра и общим минусом. Для этого используются варикапы VD8 и VD9. Их емкости регулируются с помощью переменного резистора R19, изменяющего обратное постоянное напряжение на них. Выход фильтра - на ВЧ-трансформатор Т7, а с него на второй каскад УПЧ тоже с общей базой. Демодулятор выполнен на T9 и диодах VD10 и VD11. Сигнал опорной частоты на него поступает с генератора на VT8. В нем должен быть кварцевый резонатор такой же как в кварцевом фильтре. Низкочастотный усилитель выполнен на транзисторах VT9-VT11. Схема двухкаскадная с двухтактным выходным каскадом. Резистором R33 регулируется громкость.

Нагрузкой может быть как динамик, так и головные телефоны. Катушки и трансформаторы намотаны на ферритовых кольцах. Для Т1-Т7 используются кольца внешним диаметром 10мм (можно импортные типа Т37). Т1 - 1-2=16 вит., 3-4=8 вит., Т2 - 1-2=3 вит., 3-4=30 вит., ТЗ - 1-2=30 вит., 3-4=7 вит., Т7 -1-2=15 вит., 3-4=3 вит. Т4, Тб, T9 - втрое сложенным проводом 10 витков, концы распаять согласно номерам на схеме. Т5, Т8 - вдвое сложенным проводом 10 витков, концы распаять согласно номерам на схеме. L1, L2 - на кольцах диаметром 13 мм (можно импортные типа Т50), - 44 витка. Для всех можно использовать провод ПЭВ 0,15-0,25 L3 и L4 - готовые дроссели 39 и 4,7 мкГн, соответственно. Транзисторы КТ3102Е можно заменить другими КТ3102 или КТ315. Транзистор КТ3107 - на КТ361, но нужно чтобы VT10 и VT11 были с одинаковыми буквенными индексами. Диоды 1N4148 можно заменить на КД503. Монтаж выполнен объемным способом на куске фольгированного стеклотекстолита размерами 220x90 мм.

В этой статье приводится описание трех простейших приемников с фиксированной настройкой на одну из местных станций СВ или ДВ диапазона, это предельно упрощенные приемники с питанием от батареи "Крона", расположенные в корпусах абонентских громкоговорителей, содержащих динамик и трансформатор.

Принципиальная схема приемника показана на рисунке 1А. Его входной контур образует катушка L1, конденсатор cl и подключенная к ним антенна. Настройка контура на станцию осуществляется изменением емкости С1 или индуктивности Ll. Напряжение ВЧ сигнала с части витков катушки поступает на диод VD1, работающий в качестве детектора. С переменного резистора 81, являющегося нагрузкой детектора и регулятором громкости, напряжение низкой частоты поступает на базу VT1 для усиления. Отрицательное напряжение смещения на базе этого транзистора создается постоянной составляющей продетектированного сигнала. Транзистор VT2 второго каскада усилителя НЧ имеет непосредственную связь с первым каскадом.

Усиленный им колебания низкой частоты через выходной трансформатор Т1 поступают к громкоговорителю В1 и преобразуются им в аккустические колебания. Схема приемника второго варианта показана на рисунке. Приемник, собранный по этой схеме, отличается от первого варианта только тем, что в его усилителе НЧ используются транзисторы разных типов проводимости. На рисунке 1В приведена схема третьего варианта приемника. Отличительная его особенность - положительная обратная связь, осуществляемая с помощью катушки L2, что значительно повышает чувствительность и избирательность приемника.

Для питания любого приемника используется батарея с напряжением-9В, например «Крона» или составленная из двух батарей 3336JI или отдельных элементов, важно что бы хватило места в корпусе абонентского громкоговорителя, в котором собирается приемнмк. Пока на входе нет сигнала обе транзистора почти закрыты и токпо-требляемый приемником в режиме покоя не превышает 0,2 Ма. Максимальный ток при наибольшей громкости составляет 8-12 Ма. антенной служит любой провод длиной около пяти метров, а заземлением штырь, вбитый в землю. Выбирая схему приемника нужно учитывать местные условия.

На расстоянии около 100 км до радиостанции при использовании выше указанной антенны и заземления возможен громкоговорящий прием приемниками по двум первым вариантам, до 200 км - схема третьего варианта. При расстоянии до станции не более 30 км можно обойтись антенной в виде провода длиной 2 метра и без заземления. Приемники смонтированы объемным монтажом в корпусах абонентских громкоговорителей. Переделка громкоговорителя сводится к установке нового резистора регулировки громкости, совмещенного с выключателем питания и установке гнезд для антенны и заземления, при этом разделительный трансформатор используется в качестве Т1.

Схема приемника. Катушку входного контура наматывают на отрезке феритового стержня диаметром 6 мм и длиной 80 мм. Катушку наматывают на картонном каркасе, так что бы он мог с некоторым трением перемещаться вдоль стержня Для приема радиостанций ДВ диапазона катушка должна содержать 350, с отводом от середины, витков провода ПЭВ-2-0,12. Для работы в СВ диапазоне должно быть 120 витков с отводом от середины того же провода, катушку обратной связи для приемника третьего варианта наматывают на контурную катушку, она содержит 8-15 витков. Транзисторы нужно подобрать с коэффициентом усиления Вст не менее 50.

Транзисторы могут быть любые германиевые низкочастотные соответствующей структуры. Транзистор первого каскада должен иметь минимально возможный обратный ток коллектора. Роль детектора может выполнять любой диод серий Д18, Д20, ГД507 и другие высокочастотные. Переменный резистор регулятора громкости может быть любого типа, с выключателем, с сопротивлением от 50-ти до 200 килоом. Возможно и использование штатного резистора абонентского громкоговорителя,обычно там используются резисторы с сопротивлением от 68-и до 100 ком. В этом случае придется предусмотреть отдельный выключатель питания. В качестве контурного конденсатора использован подстроечный керамический конденсатор КПК-2.

Схема приемника. Возможно использование переменного конденсатора с твердый или воздушным диэлектриком. В этом случае можно ввести в приемник ручку настройки, и если конденсатор имеет достаточно большое перекрытие (в двухсекционном можно соединить параллельно две секции, максимальная емкость при этом удвоится) можно с одной средневолновой катушкой принимать станции в ДВ и СВ диапазоне. Перед настройкой нужно измерить ток потребления от источника питания при отключенной антенне, и если он более одного миллиампера заменить первый транзистор на транзистор с меньшим обратным током коллектора. Затем нужно подключить антенну и вращением ротора контурного конденсатора и перемещая катушку по стержню настроить приемник на одну из мощных станций.

Конвертор для приема сигналов в диапазоне 50 МГЦ Тракт ПЧ-НЧ трансивера предназначен для применения в схеме последнего, супергетеродинного, с однократным преобразованием частоты. Промежуточная частота выбрана равной 4,43 Мгц (используются кварцы от видеотехники)

Магнитные ферритовые антенны хороши своими небольшими размерами и хорошо выраженной направленностью. Стержень антенны должен располагаться горизонтально и перпендикулярно направлению на радиостанцию. Другими словами, антенна не принимает сигналов со стороны торцов стержня. Кроме того, они малочувствительны к электрическим помехам, что особенно ценно в условиях больших городов, где уровень таких помех велик.

Основными элементами магнитной антенны, обозначаемой на схемах буквами МА или WA, являются катушка индуктивности, намотанная на каркасе из изоляционного материала, и сердечник из высокочастотного ферромагнитного материала (феррита) с большой магнитной проницаемостью.

Схема приемника. Нестандартный детекторный

Схема его отличается от классической прежде всего, детектором построенным на двух диодах, и конденсаторе связи, позволяющим подобрать оптимальную нагрузку контура детектором, и тем самым, получить максимальную чувствительность. При дальнейшем уменьшении емкости С3 резонансная кривая контура становится еще острее, т. е. селективность растет, но чувствительность несколько уменьшается. Сам колебательный контур состоит из катушки и конденсатора переменной емкости. Индуктивность катушки тоже можно изменять в широких пределах, вдвигая и выдвигая ферритовый стержень.

Предлагаемый приемник УКВ ЧМ представляет собой функционально законченную конструкцию с линейным выходом, подключаемую к усилителю мощности НЧ. Предназначен для приема сигналов стереовещания с системой «пилот-тон» в диапазоне 88...108 МГц. Шаг перестройки приемника 0,05 МГц. Напряжение питания – 9 В. Ток потребления – 90 мА. Реальная чувствительность – не хуже 3 мкВ.

В конструкции приемника реализовано несколько идей.
Во-первых , приемник имеет лёгкую настройку, с которой разберется любая домохозяйка. Имеется 6 кнопок для выбора канала и 2 кнопки для настройки выбранного канала (увеличение и уменьшение частоты). Также есть альтернативный вариант с использованием энкодера для тех, кто предпочитает «покрутить» настройку.

Во-вторых , используется минимальная и достаточная индикация на доступном четырехразрядном семисегентном индикаторе с общим анодом. В-третьих, при кажущейся сложности, этот приемник схемотехнически прост в сборке и настройке, а также дешев по составу электронных компонентов.

Приемник состоит из двух блоков: блока управления и блока тюнера. Конструктивно эти блоки собраны на двух платах. Принципиальная схема блока управления показана ниже.

Основой блока управления является микроконтроллер PIC16F628A фирмы Microchip. Для увеличения числа цифровых линий используется расширение, реализованное на сдвиговом регистре с защелкой 74HC595, который выпускается многими производителями.

Для индикации используется светодиодный четырехразрядный семисегментный индикатор с общим анодом типа LTC-5623 фирмы Liteon. Аналогичные по цоколевке индикаторы выпускаются и другими фирмами, например, индикатор RL-F5620. Если вы не найдете подходящий индикатор, то его аналог можно собрать на любых одноразрядных семисегментных индикаторах с общим анодом, объединив одноименные линии сегментов (для этого потребуется изменить рисунок печатной платы).

Микроконтроллер последовательно записывает байты в сдвиговый регистр: на линии DS устанавливает очередной бит необходимого логического уровня (0 или 1), затем задним фронтом сигнала (переход из 1 в 0) на линии CH_CP задвигает этот бит в регистр и, наконец, задним фронтом на линии ST_CP инициирует появление на выходах регистра записанных последних восьми бит.

Программно-аппаратно реализована так называемая динамическая индикация – особый способ работы, когда сегменты в изображениях символов зажигаются поочередно на определенные интервалы времени. Для индикации дробной части шага перестройки 0,05 МГц используется децимальная точка в четвертом разряде, под включением которой понимается этот «хвостик». С целью увеличения нагрузочной способности микроконтроллера использованы ключи на транзисторах КТ3107 (с любым буквенным индексом).

К линиям сегментов подключены кнопки. Опрос кнопок происходит одновременно с динамической индикацией, что приводит к моментальной оценке состояний «нажато» или «отпущено». Для предотвращения шунтирования кнопками сегментов индикатора последовательно включен резистор R6, в итоге ток течет по цепи с меньшим сопротивлением.

Использован инкрементирующий энкодер типа PEC12. Его можно заменить подходящим по цоколёвке энкодером из серии EC11. Также в продаже можно встретить и иные именования энкодеров, которые идентичны по цоколевке с PEC12.

Номиналы сопротивлений и конденсаторов в блоке управления могут отличаться от указанных в пределах +/–20%. Возможно использование любых нормально разомкнутых кнопок подходящих габаритов, например, тактовые кнопки TS-A6PG-130. Микросхемный стабилизатор 7805 заменим на КР142ЕН5А.

Тюнер содержит минимум радиодеталей и не содержит редких или дорогих элементов. К особенностям схемотехники можно отнести требование минимизации размеров выводов компонентов и проводников. Блок тюнера собран на микросхеме однокристального приемника TEA5711 фирмы Philips и микросхеме синтезатора частоты LM7001J фирмы Sanyo. Принципиальная схема блока тюнера показана на рис. 2.

Микросхема TEA5711 представляет собой однокристальный супергетеродинный стереофонический УКВ радиоприемник. Сигнал с гетеродина приемника TEA5711 (вывод 23) через разделительный конденсатор С23 подается на вход фазового детектора синтезатора частоты LM7001J (вывод 11). LM7001J на выходе частотного детектора (вывод 14) формирует сигнал, который подается на инвертирующий ФНЧ, собранный на транзисторах КТ3102 (с любым буквенным индексом), и затем подается на вход управления генераторов управляемых напряжением. Микросхемы TEA5711 и LM7001 желательно установить на панели для избежания перегрева во время монтажа.

Катушки индуктивности бескаркасные без сердечников. Наматываются плотно виток к витку: L1 – 7 витков на оправке 4мм, L2 – 10 витков на оправке 3мм, L3 – 12 витков на оправке 3мм. Все катушки наматываются проводом ПЭЛ-0,5.

Светодиод HL1 любого типа, например, АЛ307. Полярные конденсаторы электролитические, остальные – керамические. Подстроечный резистор R4 любой малогабаритный, например, типа СП3-38А.

Керамические радиочастотные фильтры ZQ1, ZQ2 и резонатор ZQ3 на частоту 10,7 МГц. Кварц ZQ4 в цепи образцового генератора LM7001 – 4 МГц (программно сделан пересчет на более распространенный кварц, т.к. в оригинале используется дефицитный кварц на 7,2 МГц).

Сборка, наладка, порядок работы.

Печатные платы изготавливаются любым доступным способом, например, способом ЛУТ. Впаиваются перемычки, низкопрофильные компоненты, затем крупногабаритные элементы. Платы отмывают подходящем растворителем и проверяются на просвет на предмет волосковых коротких замыканий и непропаев. Прошитый микроконтроллер устанавливаем в панель на плату управления, внимательно проверяя правильное положение ключа.

Плату управления временно отключаем от платы тюнера. Подаем питание на плату управления и смотрим реакцию индикатора на нажатия кнопок и вращение энкодера. Настройки в каналах, а также последний выбранный канал должны сохраняться после повторных включений.

Соединяем платы управления и тюнера. На линии выхода стереосигнала тюнера подключаем наушники, либо усилитель (например, компьютерные активныее колонки). Подключаем к антенному входу тюнера отрезок провода 30-40 см. Подаем питание от стабилизированного источника. Настраиваемся на крайнюю станцию в верхней части диапазона, раздвигая витки L2. Затем настраиваем режим стереоприема подстроечным резистором R4. Находим такое положение R4, при котором все станции принимаются в режиме стерео. В режиме стерео светится светодиод HL1. На этом настройку можно считать законченной.

Фотографии и монтажные рисунки.

Каждому начинающему радиолюбителю хочется собрать не только интересное в сборке и работающее устройство, но и полезное. Сегодня я расскажу, как сделать недорогой FM приёмник на микросхеме TA8164P по упрощённой схеме. Микросхему TA8164P можно заменить на более дешевую TA2003 (CD2003 ), но качество приёма упадёт в разы. Далее приведена схема приёмника:


Как вы уже заметили, в схеме нет переменного конденсатора, он заменён на пару варикапов и переменное сопротивление. В данном приёмнике сопротивление нужно использовать переменное многооборотное, но в моём случае стоит подстроечный многооборотный резистор. Можно применить такие типы:


Варикап КВ109 можно использовать с любым буквенным обозначением, я использовал КВ109А (с белой точкой). Цоколевка варикапа (ножка со стороны маркировки является анодом, а ножка со стороны выпуклой метки – катодом):


Если внимательно посматреть на схему – элементы с маркировкой 10,7 МГц, отличаются между собой количеством выводов. Элемент с двумя выводами можно назвать кварцевым резонатором, но его правельнее называть фильтром дескриминатора. Элемент с тремя выводами – радиочастотный фильтр. Эти элементы рекомендуется использовать фирмы Murata .


Катушка L1 мотается в количестве 11 витков, проводом 0.5 мм, на полом каркасе (при намотке можно использовать сверло) диаметром 2.5 мм. L2 – 10 витков, проводом 0.5 мм, на том же каркасе. Данный приёмник имеет очень низкую выходную мощность, которой хватает только на высокоомный (40-60 Ом) наушник, по этому нужно использовать УНЧ.

Печатная плата для данного устройства очень проста, её можно нарисовать и маркером. На рисунке приведена печатная плата устройства, которую можно

"Научно-технические статьи" - подборка научно-технических статей радиоэлектронной тематики: новинки электронных компонентов , научные разработки в области радиотехники и электроники , статьи по истории развития радиотехники и электроники , новые технологии и методы построения и разработки радиоэлектронных устройств, перспективные технологии будущего, аспекты и динамика развития всех направлений радиотехники и электроники , обзоры выставок радиоэлектронной тематики.

В последнее десятилетие широко и повсеместно используются УКВ-приемники. Это связано с постоянно растущим числом радиостанций различных направлений, а также высоким качеством звучания приемников с ЧМ по сравнению с АМ и возможностью стереозвучания. Однако на постсоветском пространсве есть ряд проблем с качеством имеющихся в продаже радиоприемников и с их использованием в крупных городах, в условиях наличия большого количества радиостанций и сложной электромагнитной обстановки. Автор данной статьи рассматривает положение российского рынка радиоприемников УКВ, их недостатки и варианты решения данных проблем. Все это свойственно не только России, но будет справедливо и в Беларуси.

Взгляд на российский рынок

Классифицируя бытовые приемники по потребительским функциям, можно видеть, что на отечественном рынке присутствуют:

  • миниатюрные приемники с питанием от батарей;
  • небольшие стационарные приборы с сетевым/комбинированным питанием;
  • УКВ-приемники в составе музыкальных центров;
  • автомагнитолы и автомобильные приемники.

Но вы не найдете отечественных бытовых УКВ-приемников, за исключением разве что автомагнитол семейства "Урал". Почему? Ответ вроде бы очевиден - в области портативных устройств, где главное - минимальная стоимость, с продукцией стран Юго-Восточного региона (в основном - Китая) не потягаешься. Про музыкальные центры и автомагнитолы речи вообще нет - технологически сложную технику за столь низкую цену при высоком качестве отечественная промышленность выпускать не умела никогда. В тех же магнитолах семейства "Урал" механические узлы - и лентопротяжный механизм, и CD-проигрыватель - исключительно импортного происхождения. Стационарные же приемники с сетевым питанием как бы выпали из круга интересов производителей. То, что сегодня доступно на рынке, - это либо все те же портативные изделия с сетевым питанием, либо УКВ-тюнеры в составе различных устройств (например, будильников) и музыкальных центров. Первые, как правило, обладают врожденными функциональными недостатками, вторые - достаточно высокой ценой. Кроме того, при желании можно найти высококачественный радиоприемник - но он окажется многодиапазонным. А нужен ли сегодня массовому потребителю в городе длинно-средне-коротковолновый приемник? Ведь качество принимаемого амплитудно-модулированого (AM) сигнала в этих диапазонах чрезвычайно низкое и никакой конкуренции с модулированным по частоте (ЧМ) УКВ-сигналом не выдерживает, особенно в городе - в силу как свойств распространения волн, так и особенностей модуляции. А дополнительные диапазоны приема в дорогом устройстве - это дополнительные деньги, заплаченные фактически ни за что.

В то же время в России потребность в стационарных УКВ-приемниках, может быть, даже выше, чем во многих других странах. В самом деле, даже сегодня редкая домохозяйка на кухне (секретарь в офисе, продавщица в ларьке) обходится без радио. И если не хватает денег на дорогое устройство, приходится использовать либо радиотрансляционные приемники проводного вещания ("трехпрограммники"), либо простенькие УКВ-приемники китайского производства, в лучшем случае - с брендом "Panasonic". Понятно, что радиотрансляционные сети со станциями УКВ-диапазонов конкурировать не могут - ни по числу программ, ни по качеству предаваемого сигнала. Поэтому УКВ-приемники - для дачи, для кухни, даже для работы - продаваться в России будут еще долго. Достаточно вспомнить объем парка приемников проводного вещания ("кухонного радио"), и потенциальная емкость этой потребительской ниши становится понятной. И тут могут проявиться национальные особенности этого рынка, предоставляющие определенный шанс отечественным производителям.

Особенности российского эфира

Что же отличает требования к приемникам УКВ-диапазона в России? Определимся, что речь идет о недорогих аппаратах, использующих сетевое питание и предназначенных для длительного прослушивания. Последнее означает, что требования к качеству воспроизводимого сигнала достаточно высоки - и по спектральному составу, и по наличию помех.

Первая существенная особенность - в России два диапазона УКВ-вещания: 65,8-74,0 и 88-108 МГц, советский и западный, соответственно. И отличия тут не только в собственно частотных участках вещания - различен шаг сетки частот, соответственно 30 и 100 кГц, а также девиация частоты ЧМ-сигнала - 50 и 75 кГц. Даже поляризация излучаемых передатчиками радиосигналов в советском диапазоне - горизонтальная, а в западном - вертикальная!

Кроме того, стандарты кодирования стереосигнала у нас иные, чем в остальном мире. При стереовещании ЧМ-сигнал модулируется так называемым комплесным стереосигналом (КСС). В СССР была принята система с полярно-модулированным (ПМ) сигналом (стандарт Международной организации радиовещания и телевидения - OIRT). При этом аудиосигнал модулирует поднесущую частоту 31,25 кГц, но так, что огибающая положительных полупериодов модулирована сигналом левого стереоканала, отрицательных - правого. Поднесущая подавляется на 14 дБ. В принятом практически во всем мире стандарте международного консультативного комитета по радиовещанию (CCIR) при формировании КСС поднесущая 38 кГц подавляется полностью, а для ее восстановления в приемнике передается пилоттон 19 кГц (рис.1).

Рис.1. Формировоние комплексного стереосигнала (а) и его представление в стандартах OIRT (6) и CCIR (в).

Кроме того, в России в условиях мегаполисов возникают дополнительные проблемы, связанные с расположением передающих центров. Например, для Москвы Останкино, Октябрьское Поле, Балашиха, Шаболовка - далеко не полный перечень географии передатчиков. В результате в зависимости от точки приема уровень сигнала на соседних каналах (с разносом порядка 300-400 кГц) может различаться на десятки децибел, что налагает особые требования на динамический диапазон и избирательность приемников.

Анатомия УКВ-приемника

Классическая схема УКВ-приемника ЧМ-сигнала представлена на рис. 2. Это - приемник с однократным преобразованием частоты (супергетеродинная схема). Сигнал с антенны попадает в высокоча-стотный (ВЧ) тракт, включающий преселектор (входной полосовой фильтр и усилитель высокой частоты - УВЧ), а также гетеродин со смесителем. УВЧ не только усиливает сигнал, но и фильтрует его в заданной полосе. Усиленный ВЧ-сигнал поступает в смеситель, в идеале реализующий функцию U =u н cos(2пf н t u ub>г cos(2пf г t ), где f н , u н и f г u г - частота и амплитуда входного сигнала и сигнала гетеродина, соответственно. После смесителя сигнал (с точностью до амплитуды) имеет вид cos2п(f н +f г )t +cos2п(f н -f г )t , что соответствует модулированным сигналам на несущих f н +f г и |f н -f г |. Разностную составляющую - промежуточную частоту (ПЧ) f пч =|f н -f г | - выделяет полосовым фильтром и в дальнейшем работают именно с ней.

Сигнал ПЧ фильтруется и усиливается, после чего сигнал попадет на частотный детектор - ЧМ-демодулятор (преобразователь частота-напряжение). После демодуляции низкочастотный сигнал усиливается в усилитель звуковой частоты и далее - на устройства воспроизведения. При трансляции стереопрограмм после частотного детектора сигнал сначала поступает стереодекодер. Разумеется, мы перечислили лишь самые основные функциональные блоки - не рассматривая такие важные для бытового приемника функции, как автоподстройка частоты, бесшумная настройка, генерация комфортного шума, автоматическая регулировка уровня и т.д. Настройка на частоту станции происходит посредством одновременного изменения частоты гетеродина и LC-контуров преселектора.


Рис.2. Обобщенная блок-схема супергетеродинного ЧМ-приемника.

В супергетеродинных схемах одна из основных проблем - необходимость подавлять сигнал в так называемом зеркальном канале. Его природа понятна - поскольку после смесителя выделяется f пч =|f н -f г |, в тракт ПЧ может попасть как сигнал с частотой f н =f г -f пч (если частота гетеродина выше сигнала настройки), так и с f з =f г +f пч , т.е. сигнал, расположенный симметрично частоте настройки относительно частоты гетеродина. Следовательно, f з =f н ±2f пч в зависимости от того, выше или ниже частоты гетеродина находится полезный сигнал. Понятно, что подавлять сигнал в зеркальном канале необходимо в преселекторе, до смесителя. Причем чем выше ПЧ, тем больше разнос основного и зеркального каналов и тем проще решить эту проблему. Но даже для стандартной ПЧ 10,7 МГц зеркальный канал диапазона "советского" УКВ оказывается в области 87,2-95,4 МГц, где в России расположены некоторые телевизионные каналы и их звуковое сопровождение, а теперь ещё и радиостанции западного диапазона вещания. В работе показано, что в этом случае избирательность по зеркальному каналу должна быть по крайней мере не хуже 78 дБ - а в ряде случаев и всех 100 дБ. Можно ли добиться столь высокой избирательности в бытовой аппаратуре - большой вопрос.

Не менее важной характеристикой является и избирательность по соседнему каналу. А для УКВ допустимый разнос соседних каналов при трансляции различных программ из соседних зон -лишь 180 кГц. Конечно, практически в одной зоне он составляет 300-400 кГц. Особенно важна избирательность по соседнему каналу для городов, где радиовещание ведется из нескольких центров, и соседние по частоте, но разнесенные в пространстве радиостанции могут наводить в антенне сигналы, различающиеся по уровню на десятки децибел.

Рис.3. Построение УKB-приемнико на комплекте ИС фирмы Philips.


Рис.4. Структурная схема ИС TDA7021.

Однако главная проблема УКВ-приемника - необходимость обеспечить его низкую стоимость, поскольку технически все перечисленные трудности вполне разрешимы. Собственно, это проблема всей бытовой техники, и решается она стандартно - выпуском массовых ИС, в которые интегрировано как можно больше функциональных блоков устройства. Один из первых однокристальных тюнеров выпустила фирма Philips еще в 1983-м - это была знаменитая TDA7000. Заложенные в ней решения оказались столь удачными, что она послужила прототипом многих ИС - как прямых аналогов, например КС1066ХА1, К174ХА42, так и более совершенных схем самой компании Philips. Это такие ИС, как TDA7021 с расширенной полосой пропускания для приема стереосигнала, и TDA7088, включающая систему поиска и автоматической настройки на частоту станции. Основное достоинство таких схем - простота реализации устройства с минимумом дополнительных компонентов. Пример схемы законченного приемника на TDA7021 со стереодекодером (TDA7040T) и усилителем (TDA7050T) приведен на рис.3. Заметим, что для миниатюрного монофонического приемника последние две ИС не нужны.

Обратная сторона этого, безусловно, наиболее дешевого решения - низкая ПЧ, порядка 70 кГц (как правило, 69-76 кГц). Столь низкая ПЧ позволила применить активные полосовые фильтры на базе операционных усилителей, входящих в состав ИС приемника (рис.4). Но при этом зеркальный канал оказывается отстоящим от частоты настройки менее чем на 150 кГц, следовательно, избирательность по соседнему каналу отсутствует. Спасает лишь то, что реально каналы вещания разнесены на 300-400 кГц. Однако помехи из зеркального канала увеличивают коэффициент шума приемника по меньшей мере на 3 дБ. Понятно, что повышение чувствительности при столь низкой избирательности ни к чему хорошему не приведет. Кроме того, в диапазоне 88-108 МГц максимальная девиация ±75 кГц практически совпадает с ПЧ и в тракте такой ПЧ неизбежны нелинейные искажения ЧМ-сигнала. Поэтому в схему введена отрицательная обратная связь по частоте (ОЧС), ограничивающая девиацию частоты принимаемого ЧМ-сигнала. Благодаря ОЧС не только снижается девиация до 15-20 кГц, но и улучшается точность настройки гетеродина - реализуется автоподстройка частоты. Сигнал ОЧС формируется усилителем-ограничителем после частотного демодулятора, и он управляет подстроечными варикапами гетеродина (см. рис.4). Однако при уменьшении полосы сигнала снижается его динамический диапазон, следовательно, ухудшается качество аудиосигнала. К ухудшению восприятия ведут и неизбежные искажения на пиках девиации. Поскольку в ИС один и тот же варикап используется и в частотозадающем контуре гетеродина, и в петле обратной связи по частоте, крутизна перестройки гетеродина оказывается разной в начале и конце диапазона, а следовательно, различен и уровень выходного НЧ-сигнала. ИС семейства TDA70xx и их аналоги многократно и подробно описаны (например, в работе ). Нам же важно констатировать, что УКВ-приемники на этих ИС для российских мегаполисов неприемлемы, если речь не идет об игрушках.

Разумеется, все перечисленные проблемы хорошо известны, поэтому производится немало специализированных ИС для радиоаппаратуры со стандартной ПЧ 10,7 МГц. Один из многих примеров - стерео АМ/ЧМ-приемник ТЕА5711 (рис.5). Схема его включения показана на рис.6. Данная ИС содержит декодер стереоканала - но в стандарте CCIR. Компания Philips выпускает и ИС УКВ-ресивера без стереодекодера - ТЕА5710. Собственно, аналогичных схем (со стереодекодером и без) сегодня достаточно много -их производят такие фирмы, как Sony (CXA1238 и 1538), Sanyo, Matsushita, Rohm, Toshiba и др. (подробнее элементная база современных приемников рассмотрена, например, в работе ).

Однако при всем многообразии современной элементной базы практически все недорогие модели в России представлены достаточно однотипными приемниками китайского производства, в лучшем случае - с ПЧ 10,7 МГц, поддерживающие диапазоны 65,8-74 и 88-108 МГц, с настройкой на станцию посредством вращения верньера. Как правило, это - однодиапазонные приемники, рассчитанные на частотный интервал 65-108 МГц. В результате принимаемые частоты оказываются на краях их рабочего диапазона. При столь большом перекрытии крайне трудно обеспечить сопряжение входного фильтра и частотозадающего контура гетеродина -а настройка осуществляется одновременной перестройкой переменных конденсаторов в этих LC-контурах. У них различный коэффициент перекрытия и, как правило, хорошего сопряжения удается добиться в трех точках - на краях и в середине диапазона, что приводит к неравномерной чувствительности приемника по диапазону. Кроме того, столь большое перекрытие при неравномерном расположении каналов вещания (у краев) крайне затрудняет настройку на станцию - зачастую программу от программы отделяет поворот ручки настройки на доли градуса. Ясно, что определить значение частоты по шкале настройки такого радиоприемника невозможно.


Рис.5. Структурная схема ИС стереотюнера ТЕА5711.

Кроме того, необходимость высокой помехозащищенности городского приемника накладывает повышенные требования на точностъ настройки всех контуров - а их несколько, и они содержат высокодобротные катушки индуктивности, выполненные в виде отдельного элемента. Настройка этих узлов плохо совмещается с идеологией массового производства посредством низкоквалифицированного персонала. В результате практически все УКВ-приемники китайского производства отличаются не только достаточно примитивной схемотехникой и непродуманной в плане помехозащищенности конструкцией. В массе своей их внутренние узлы попросту не настроены - ведь приемник где-то как-то работает, а насколько хорошо, производителя не интересует.

Какой приемник нужен России?

Несколько лет назад таким вопросом задались сотрудники фирмы "Постамаркет", объявив, при участии радиостанции "Эхо Москвы", конкурс на лучшее решение УКВ-приемника для России. В качестве обязательных требований указывалась работа в двух УКВ-диапазонах, возможность цифровой настройки с запоминанием по крайней мере 10 станций, индикация частоты настройки, наличие гнезда для подключения внешней телевизионной антенны, внешнее сетевое питание, уверенная работа в условиях сложной электромагнитной обстановки мегаполиса, высокая технологичность и низкая стоимость. К сожалению, организаторам было представлено лишь одно интересное решение от группы разработчиков НИИ РП -зато действительно удовлетворявшее их непростым требованиям. В чем его суть? Разработчики решили отказаться от классической схемы супергетеродинного приемника с однократным преобразованием частоты и предложили в общем-то известный принцип инфрадинного приема, когда ПЧ существенно выше диапазона рабочих частот. Данный метод иногда применяли в дорогих стационарных АМ-приемниках , но в УКВ-диапазоне такой подход представлялся чрезмерно дорогостоящим. Однако элементная база развивается, и то, что еще вчера было эксклюзивным, сегодня оказывается массовым и недорогим.


Рис.6. Схема включения ТЕА5711 с УНЧ TDA7050T.

При инфрадинной схеме преселектор делается неперестраиваемым и широкополосным - на весь диапазон приема, что существенно упрощает его конструкцию. Правда, неизбежная расплата за это - входные цепи (фильтры, УВЧ, смеситель) должны обладать широким динамическим диапазоном и высокой линейностью. Но это уже схемотехническая проблема, вполне решаемая при современной элементной базе. Настройка на станцию осуществляется исключительно путем перестройки частоты первого гетеродина.

В предложенной разработчиками схеме (см. рис.7) используется два раздельных входных полосовых фильтра на диапазоны 65,8-74 и 88-108 МГц и двойное преобразование частоты. Первая ПЧ - 250 МГц, следовательно, частота первого гетеродина должна быть в диапазоне 315-360 МГц. Таким образом, зеркальный канал оказывается очень далеко от рабочего - выше 565 МГц, и проблем с его подавлением входным фильтром не возникает.

Пожалуй, ключевой элемент данного приемника - фильтр ПЧ. Его АЧХ должна быть практически прямоугольной, с полосой пропускания 250 кГц при центральной частоте 250 МГц. Сумев решить данную проблему, разработчики получили приемник, имеющий всего один перестраиваемый элемент (первый гетеродин). После фильтра ПЧ сигнал преобразуется во вторую ПЧ - уже стандартную, 10,7 МГц. При этом второй гетеродин настроен на фиксированную частоту, и всю дальнейшую обработку сигнала реализуют стандартные элементы хорошо отработанного и дешевого тракта ПЧ 10,7 МГц. Иными словами, в стандартном супергетеродинном приемнике зафиксирована частота гетеродина, а вместо перестраиваемого сложного преселектора введен широкополосный неперестраиваемый преселектор и высоколинейный высокочастотный тракт до первой ПЧ. Это позволило решить проблемы избирательности по зеркальному и соседним каналам и предотвратить нелинейные комбинационные помехи.


Рис.7. Функционольноя схеме инфрадинного УKB-приемника с широкополосным преселектором.

Отметим, что еще сравнительно недавно существенной проблемой было отсутствие ИС стереодекодера, поддерживающего как стандарт CCIR (пилот-тон), так и OIRT (ПМ). Однако она отпала с тех пор, как "Ангстрем" начал производить ИС КР174ХА51 - стереодекодер с синхронизацией посредством ФАПЧ, с автоматическим и принудительным определением стандартов декодирования (рис. 8).

Впрочем, "Ангстрем" выпускает комплект ИС для УКВ-приемника. Но поскольку это предприятие ориентировано на рынок Юго-восточного региона, производимая им ИС тюнера КР174ХА34 рассчитана на низкую ПЧ, около 70 кГц. Выше мы говорили о недостатке таких тюнеров и их непригодности для качественных приемнике особенно в России. Однако рынок ИС тюнеров достаточно велик и есть из чего выбирать. Например, минское НПО "Интеграл" производит микросхемы ILA1238NS и ILA1191NS - аналоги широко известных ИС компании Sony CXA1238 и СХА 1191 (стерео- и моно-фонические приемники, рассчитанные на ПЧ 10,7 МГц).

Крайне важный аспект - управление приемником. Радиостанций в обоих УКВ-диапазонах в Москве - свыше тридцати, в других крупных городах не намного меньше. Поэтому цифровая настройка с запоминанием по крайней мере 10 станций и с индикацией частоты приема, - не роскошь, а необходимое требование к стационарному приемнику. Но при сегодняшнем разнообразии синтезаторов частот, индикаторов всех типов и их контроллеров, а также универсальных микроконтроллеров проблем с недорогой реализацией данной функции нет - вплоть до управления через ИК-порт. В дешевых китайских моделях цифровой настройки нет, а это еще один потенциальный "плюс" для отечественных производителей. Впрочем, встречаются дешевые китайские УКВ-приемники с цифровой настройкой. (Как правило, система настройки и в них работает, в вот собственно приемник - нет.)

Таким образом, предпосылки для производства уникального отечественного приемника - "кухонного УКВ-радио" есть. Прежде всего, недорогие зарубежные модели не справляются со сложной помеховой обстановкой и особенностями трансляции в крупных российских городах. Кроме того, у них примитивен, а потому слишком неудобен интерфейс пользователя. Наконец, только дорогие модели полноценно поддерживают работу в двух российских УКВ-диапазонах, особенно в части стереоприема (но врожденные недостатки устройств со стандартной ПЧ 10,7 МГц остаются при них). В то же время реализация всех дополнительных функций -задача достаточно простая по сравнению с качественным приемом сигнала и не существенно увеличивает себестоимость изделия, особенно при массовом производстве. А вот схема собственно тюнера заслуживает самого пристального внимания, и предложенная и испытанная разработчиками НИИ РП концепция инфрадинного УКВ-приемника может стать тем самым недостающим звеном, которое способно соединить высокое качество и низкую цену -если, конечно же, кто-нибудь не предложит более оптимальное решение.

Чего в России нет

Единственное, чего нет в нашей стране для массовых УКВ-приемников, - это возможности-производства современных корпусов. Ведь радиоприемник, как и любая бытовая техника, - это не только носитель технической функции, но и элемент интерьера, предмет, который должен радовать глаз. И без разнообразных и качественных корпусов самая интересная и перспективная разработка так и останется внутри макетной коробки. Не решив столь, казалось бы, далекую от электроники проблему производства качественных пластмассовых изделий, выпуск электронной бытовой техники в России невозможен. А это - вопрос вложения денег в приобретение оборудования и, что самое главное, в технологию разработки пресс-форм. Одному производителю, наверное, это не по карману. Конечно, корпуса (или пресс-формы) можно заказывать в том же Китае - но, во-первых, это достаточно дорогое удовольствие, а во-вторых, в этом случае крайне тяжело гарантировать, что эти корпуса окажутся не только у их заказчика, но и у всех желающих их купить. К авторским правам и пиратским копиям там относятся весьма своеобразно - по западным понятиям. И защита от этого - опять же большие деньги.

Но может быть, радиостанции заинтересованы, чтобы их программы доходили до как можно большего числа потенциальных слушателей. И чтобы качество приема их сигнала было достаточно высоким? Так не пора ли в России организовать консорциум разработчиков, производителей УКВ-аппаратуры и радиовещательных предприятий? Подобные консорциумы по вопросам развития передовых технологий распространены во всем мире. Пусть УКВ-ве-щание - технология не новая, но поскольку в России существует проблема, непосильная для одного производителя, но в решении которой потенциально заинтересованы многие, может быть, путь кооперации принесет результат?

Источники

  1. Кононович Л.М. Современный радиовещательный приемник - М.: Радио и связь, 1986.
  2. Поляков В. Однокристальные ЧМ приемники. - Радио, 1997, №2.
  3. Куликов Г., Парамонов А. Радиоприемные тракты бытовой аудиоаппаратуры (часть 1 и 2). - Ремонт электронной техники, 2000, № 2-3.